Abstract

The theoretical development and implementation of an optimization technique based on optimal control method is presented for the two-dimensional full-potential flow model. This technique, in comparison with the classical finite-differences approach (brute force), provides major savings in the overall computational cost. The reduction on computational effort is due to the fact that the gradient of a cost function can be evaluated by a closed form equation after the solution of an adjoint equation. Since this adjoint equation is similar to the full-potential equation itself, the same solution algorithm is applied. Inverse design problems are solved using optimization in both subsonic and transonic flows. Also wave drag minimization is successfully accomplished.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.