Abstract

Interface engineering has proven to be a highly efficient strategy for modulating the physicochemical properties of electrocatalysts and further enhancing their electrochemical performance in related energy applications. In this context, the newly proposed crystalline-amorphous (c-a) heterostructures with unusual atomic arrangements at interfaces show strong competitiveness. Nonetheless, few efforts have been made to reveal and summarize the structure-activity relationship at the two-phase interface and the corresponding electrocatalytic mechanism. This concept is devoted to comprehensively discussing the fundamental characteristics of crystalline-amorphous electrocatalysts and their application in the field of energy conversion with typical examples. In addition, the development prospects and opportunities of crystalline-amorphous heterostructure are summarized to provide potential development directions for other types of clean energy development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call