Abstract

Electrothermal bimorph actuators have been widely researched, comprising two layers with asymmetric expansion that generate a bending displacement. Actuation performance greatly relies upon the difference of the coefficients of thermal expansion (CTE) between the two material layers. Since traditionally used bimorph materials have positive CTE values, the generated displacements are restricted because of their relatively low CTE difference. Currently, the synthesis and characterization of carbon nanotube (CNT)/polymer composite actuators are topics of intense research activity. CNTs have been attracting much interest because of their superior electrical, thermal and mechanical properties. In addition, the negative CTE value of CNTs in the axial direction has been investigated analytically, leading one to expect that the CTE of the composites in a direction parallel to the CNT alignment will drastically decrease by containing the aligned CNTs into polymer materials. In this chapter, an experimen‐ tal method for determining the CTE of a CNT in the axial direction is discussed. Based on this result, we demonstrate an electrothermal bimorph actuator having a large bending displacement and high force output using an aligned CNT-reinforced epoxy composite and thin aluminum foil. Performance characteristics including power and work output per unit volume versus frequency are also reviewed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call