Abstract
Affinity selection-mass spectrometry (AS-MS) is a sensitive technology for identifying small molecules that bind to target proteins, and assays enabled by AS-MS can be used to delineate relative binding affinities of ligands for proteins. 'Indirect' AS-MS assays employ size-exclusion techniques to separate target-ligand complexes from unbound ligands, and target-associated ligands are then specifically detected by liquid chromatography mass spectrometry. We report how indirect AS-MS binding assays with known reference control compounds were used as guideposts for development of an optimized purification method for CXCR4, a G-protein coupled chemokine receptor, for which we sought novel antagonists. The CXCR4 purification method that was developed was amenable to scale-up and enabled the screening of purified recombinant human CXCR4 against a large combinatorial library of small molecules by high throughput indirect AS-MS. The screen resulted in the discovery of new ligands that competed off binding of reference compounds to CXCR4 in AS-MS binding assays and that antagonized SDF1α-triggered responses and CXCR4-mediated HIV1 viral uptake in cell-based assays. This report provides a methodological paradigm whereby indirect AS-MS-based ligand binding assays may be used to guide optimal integral membrane protein purification methods that enable downstream affinity selection-based applications such as high throughput AS-MS screens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Combinatorial Chemistry & High Throughput Screening
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.