Abstract

A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 μm to 0.600 μm were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 μm. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size‐resolved concentration contributed by each of the size modes and the mode‐resolved hygroscopicity. This transformation from size‐resolved hygroscopicity to mode‐resolved hygroscopicity facilitated examination of changes in the hygroscopic properties of particles within a size distribution mode that accompanied changes in the sizes of those particles. This model was used to examine three specific cases in which the sampled aerosol evolved slowly over a period of hours or days.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call