Abstract

This paper describes the application of an advanced probabilistic fracture mechanics computational algorithm with inspection simulation to the probabilistic life assessment of a turbine blade attachment, sometimes referred to as a steeple or fir tree. The life of the steeple is limited by high cycle fatigue. The methodology utilized combines structural finite element analysis, stochastic fatigue crack growth, and crack inspection and repair. The resulting information provides the engineer with an assessment of the probability of failure of the structure as a function of operating time and the effect of the inspection procedure. This information can form the basis of inspection planning and retirement-for-cause decisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.