Abstract

Software performance engineering supports software architects to identify potential performance problems, such as bottlenecks, in their software systems during the design phase. In such early stages of the software life-cycle, only little information is available about the system's implementation and execution environment. However, these details are crucial for accurate performance predictions. Performance completions close the gap between available high-level models and required low-level details. Using model-driven technologies, transformations can include details of the implementation and execution environment into abstract performance models. Existing approaches do not consider the relation of actual implementations and performance models used for prediction. Furthermore, they neglect the broad variety of implementations and middleware platforms, possible configurations, and varying usage scenarios. To allow more accurate performance predictions, we extend classical performance engineering by automated model refinements based on a library of reusable performance completions. We use model-driven techniques, more specifically higher-order transformations, to implement and automatically integrate performance completions in the context of the Palladio Component Model. With our tool set, software architects can model an application in a language specific to their domain. They can annotate the model elements that require further refinement. Higher-order transformations then apply the selected completion with its configuration. In a case study of a middleware configuration, we illustrate the benefit of performance completions with respect to the accuracy of performance predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.