Abstract

The adiabatic rapid passage (ARP) technique was applied to the study of molecular motion in solids. Second moments and spin–lattice relaxation times for solid furan and benzene were derived using ARP methods from 77 °K to the respective melting points. Unusual variations of the ARP signal height and shape with temperature were observed for these solids. These effects were interpreted as being due to the presence of short rotating frame relaxation times. New information regarding molecular motion in solid furan, as well as acetic acid-d1, was obtained. Also some quantitative statements have been made regarding the conditions required to observe an ARP signal in the solid state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.