Abstract

Advanced methods of signal analysis of the preictal and ictal activity dynamics characterizing absence epilepsy in humans with absences and in genetic animal models have revealed new and unknown electroencephalographic characteristics, that has led to new insights and theories. Taking into account that some network associations can be considered as nonlinear, an adaptive nonlinear Granger causality approach was developed and applied to analyze cortico-cortical, cortico-thalamic and intrathalamic network interactions from local field potentials (LFPs). The outcomes of adaptive nonlinear models, constructed based on the properties of electroencephalographic signal and on statistical criteria to optimize the number of coefficients in the models, were compared with the outcomes of linear Granger causality. The nonlinear adaptive method showed statistically significant preictal changes in Granger causality in almost all pairs of channels, as well as ictal changes in cortico-cortical, cortico-thalamic and intrathalamic networks. Current results suggest rearrangement of interactions in the thalamo-cortical network accompanied the transition from preictal to ictal phase. The linear method revealed no preictal and less ictal changes in causality. Achieved results suggest that this proposed adaptive nonlinear method is more sensitive than the linear one to dynamics of network properties. Since changes in coupling were found before the seizure-related increase of LFP signal amplitude and also based on some additional tests it seems likely that they were not spurious and could not result from signal to noise ratio change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.