Abstract
Objective: In practical application, an SCM control system needs to respond to user instructions quickly and accurately, and at the same time needs to have robustness and adaptability to adapt to complex and changeable environments and working states. Therefore, how to improve the control accuracy and stability of SCM control systems, and how to adapt to the change of different working environments and working states, has become one of the important issues in the design and research of SCM control systems. Methods: Adaptive fuzzy algorithm, as a new control algorithm, has the advantages of simple structure, easy implementation and high precision, and has been widely used in many fields. On the basis of three kinds of fuzzy logic system framework, this paper analyzes the self-adaptive fuzzy algorithm single-chip microcomputer control system and carries on the corresponding performance test of the system by constructing an intelligent car. The testability test of single-chip microcomputer detection, hardware detection, algorithm recognition rate and system control rate is tested, respectively, to ensure the normal operation of the system. Conclusion: The microcontroller control system of fuzzy algorithm system is compared with that of traditional algorithm system in many aspects. The average error rate of the traditional algorithm system is 2%, while the average error rate of the fuzzy algorithm system is 0.8%. In other aspects, the fuzzy algorithm system is superior to the traditional system. For example, the fuzzy algorithm system has a 100% instruction recognition rate and a data processing speed of up to 1 second. According to the characteristics and requirements of the single-chip microcomputer control system, applying the adaptive fuzzy algorithm to the design of a single-chip microcomputer control system can effectively improve the control precision and stability of thesystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of High Speed Electronics and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.