Abstract

Accurate system modelling is an important prerequisite for optimized process control in modern industrial scenarios. The task of parameter identification for a model can be considered as an optimization problem of searching for a set of continuous parameters to minimize the discrepancy between the model outputs and true output values. Differential Evolution (DE), as a class of population-based and global search algorithms, has strong potential to be employed here to solve this problem. Nevertheless, the performance of DE is rather sensitive to its two running parameters: scaling factor and crossover rate. Improper setting of these two parameters may cause weak performance of DE in real applications. This paper presents a new adaptive algorithm for DE, which does not require good parameter values to be specified by users in advance. Our new algorithm is established by integration of greedy search into the original DE algorithm. Greedy search is conducted repeatedly during the running of DE to reach better parameter assignments in the neighborhood. We have applied our adaptive DE algorithm for process model identification in a Furnace Optimized Control System (FOCS). The experiment results revealed that our adaptive DE algorithm yielded process models that estimated temperatures inside a furnace more precisely than those produced by using the original DE algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call