Abstract

We investigate how well the GRACE satellite orbits can be determined using the on-board GPS data combined with the accelerometer data. The preprocessing of the accelerometer data and the methods and models used in the orbit determination are presented. In order to assess the orbit accuracy, a number of tests are made, including external orbit comparison, and through Satellite Laser Ranging (SLR) residuals and K-band ranging (KBR) residuals. It is shown that the standard deviations of the position differences between the so-called precise science orbits (PSO) produced by GFZ, and the single-difference (SD) and zero-difference (ZD) dynamic orbits are about 7 cm and 6 cm, respectively. The independent SLR validation indicates that the overall root-mean-squared (RMS) errors of the SD solution for days 309-329 of 2002 are about 4.93 cm and 5.22 cm, for GRACE-A and B respectively; the overall RMS errors of the ZD solution are about 4.25 cm and 4.71 cm, respectively. The relative accuracy between the two GRACE satellites is validated by the KBR data to be on a level of 1.29 cm for the SD, and 1.03 cm for the ZD solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.