Abstract

Fluorescence diffuse optical tomography is a powerful tool for the investigation of molecular events in studies for new therapeutic developments. Here, the emphasis is put on the mathematical problem of tomography, which can be formulated in terms of an estimation of physical parameters appearing as a set of Partial Differential Equations (PDEs). The standard polynomial Finite Element Method (FEM) is a method of choice to solve the diffusion equation because it has no restriction in terms of neither the geometry nor the homogeneity of the system, but it is time consuming. In order to speed up computation time, this paper proposes an alternative numerical model, describing the diffusion operator in orthonormal basis of compactly supported wavelets. The discretization of the PDEs yields to matrices which are easily computed from derivative wavelet product integrals. Due to the shape of the wavelet basis, the studied domain is included in a regular fictitious domain. A validation study and a comparison with the standard FEM are conducted on synthetic data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.