Abstract

Process analytical technology (PAT) is an essential tool within pharmaceutical manufacturing to ensure consistent quality and maintain process control. Near-infrared (NIR) spectroscopy is one of the most popular PAT techniques, particularly for monitoring active pharmaceutical ingredient (API) concentrations. To interpret the spectral outputs of NIR spectroscopy, advanced multivariate models are required. Calibration-free models such as iterative optimization technology (IOT) algorithms are increasingly of interest, due primarily to their reduced material and time burdens. Variable/wavelength selection is a common method to improve prediction performance and robustness for IOT by focusing on spectral regions with the most relevant information. However, currently proposed wavelength selection approaches rely on training sets for optimization, therefore reducing or removing the advantages of IOT over empirical calibration-dependent models. In this work, a true calibration-free wavelength selection method is proposed based on measuring the difference between individual wavelengths of a mixture spectra and the net analyte signals via a wavelength angle mapper (WAM). An extension of the WAM utilizing a spectral window of wavelength instead of individual wavelengths, called SWAM, was also developed. However, the SWAM method does require a small training set to optimize wavelength selection parameters. The WAM and SWAM methods showed similar prediction performance for API in pharmaceutical powder blends when compared against other calibration-dependent models and the base IOT algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call