Abstract

A newly developed finite volume method was applied to ship slamming. The computational method accounts for arbitrary free surface deformations and uses unstructured grids for the discretization of the domain. A linear panel method was used to predict motions of a modern 2400 TEU container ship. Resulting relative velocities at the ship’s Keel were used to estimate the maximum vertical re-entry velocities at the bow in North Atlantic wave conditions. Water entry of three bow in North Atlantic wave conditions. Water entry of three bow sections was numerically simulated to determine pressures at the bow flare. Prescribed vertical velocity histories significantly affected the determination of realistic pressure levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.