Abstract

To identify the production and consumption pathways and temporal dynamics of N2O emitted from soil, this study uses 15N-labelled substrate-N to quantify the underlying gross N transformation rates using the Ntrace analysis tool and link them to N-emissions. In three experiments twelve soil cores each were incubated in a lab incubation system to measure gaseous emissions, while parallel incubations under the same conditions were set up for destructive soil sampling at 7 time points. Using the triple labelling technique (applying NH4NO3 with either the NH4+-N or the NO3−-N, or both being 15N labelled), this study investigated the effects of 55, 70 and 85% water filled pore space (deemed to promote nitrification, both nitrification and denitrification, and denitrification, respectively) in a clay soil on gaseous N emissions and investigates the source and processes leading to N2O emissions.To assess the utilisation of applied NO3− vs. nitrified NO3− from applied NH4+, the 15N tracing tool Ntrace was used to quantify the rates of immobilisation of NO3− and NH4+, oxidation of NH4+, mineralisation of organic N and subsequent nitrification by the analysis of the 15N in the soil. Gross transformation rates were calculated, indicating the relative importance of added NO3− and NO3− derived from nitrified added NH4+.Results show an important contribution of heterotrophic nitrification (organic N oxidation to NO3−) which was highest at the 55% water filled pore space (WFPS), decreasing in its contribution to N-transformation processes with increasing WFPS, while nitrification (NH4+ oxidation to NO3−) was contributing the most at 70% WFPS. The contribution of denitrification increased with increasing WFPS, but only became dominant at 85% WFPS. While denitrification still showed to be most important at high and nitrification at lower WFPS, the actual % WFPS values were not as expected and highlight the fact that WFPS is a contributor, but not the sole/most important parameter determining the type of N-transformation processes taking place.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.