Abstract
A Tilt Integral Derivative (TID) controller is designed in this paper for the Load Frequency Control (LFC) issue of a multi-area interconnected restructured power system. The suggested TID controller settings are fine-tuned using a novel optimization technique known as Hunger Games Search (HGS) algorithm. A multi-area interconnected power system with various generating units is used to test the performance of the proposed TID controller based on HGS. The suggested controller also takes into account system non-linearities such as Generation Rate Constraints (GRCs) and Governor Dead Band (GDB). The superiority of HGS's optimization over a range of other significant optimization techniques, such as the grey-wolf optimization algorithm, has been confirmed. The simulation results show that the proposed TID controller based on HGS improves system frequency stability significantly under a variety of load perturbation scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, Technology & Applied Science Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.