Abstract

For the upgrade and expansion of an existing caprolactam wastewater treatment plant, a freely floating sponge media (BioCube) process was selected based on extensive pilot-plant tests, due to extreme space constraints. In order to protect nitrifier inhibition caused by high strength organics in caprolactam wastewater, the pilot plant consisted of an organics removal reactor, which functioned as a pretreatment for nitrification, and followed the nitrogen removal reactor. The suspended MLSS was 1,800-4,000 and the media attached MLSS was maintained at 22,000-26,000 mg/L. The final effluent COD was noticeably low, around 20.4-37 mg/L, even with fairly large fluctuations in the feed levels, between 1,400-6,770 mg/L. The removal of total nitrogen with the system, when denitrification was close to completion, was approximately 97.6%. For the entire run, complete nitrification of 99.6% was achieved, which might have been due to well-acclimatized nitrifiers attached in the BioCube media. Specifically, after adaptation, the nitrification continuously increased in the organics removal reactor, even under high residual organics conditions. From the numerous experimental results, the BioCube process seemed to be an effective method for the upgrading and expansion of the existing wastewater treatment plant, with minimum reactor enlargement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call