Abstract

A sorbent trap that utilizes activated carbon (AC) as the solid trapping medium is a new technology for measuring total mercury (Hg) emissions from combustion facilities. In this study, sorbent trap technology was further developed, improved and evaluated at the laboratory scale. AC was impregnated with 5% aqua regia to enhance its Hg adsorption capacity. Sorbent traps spiked with an Hg standard solution were found to be reproducibly prepared and highly stable. The effect of the Hg concentration on the spiking efficiency was further investigated. The adsorption of elemental and oxidized Hg by the sorbent trap was studied under various experimental conditions (temperature, flow rate and inlet Hg concentration). The Hg concentration of the flue gas effluent from the sorbent trap was measured. In addition, the concentration of Hg adsorbed on the AC was determined by digesting the used AC with an acid according to US EPA method 3052 and then analyzing it with cold vapor atomic absorption spectrometry. Furthermore, the gas-phase Hg emissions from a combustion source were measured using the sorbent trap according to US EPA method 30B. The results showed that the sorbent trap could be used for Hg concentrations between 10.0 and 40.0 μg m−3 and flow rates between 0.5 and 1.0 lpm with adsorption efficiencies greater than 90%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.