Abstract
Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.