Abstract

For the first time, a Live/Dead® (L/D) Bacterial Viability Kit (BacLight™) protocol was adapted to marine sediments and applied to deep-sea sediment samples to assess the viability (based on membrane integrity) of benthic bacterial communities. Following a transect of nine stations in the Fram Strait (Arctic Ocean), we observed a decrease of both bacterial viability and abundance with increasing water (1250–5600 m) and sediment depth (0–5 cm). Percentage of viable (and thus potentially active) cells ranged between 20–60% within the first and 10–40% within the fifth centimetre of sediment throughout the transect, esterase activity estimations (FDA) similarly varied from highest (13.3±5.4 nmol cm −3 h −1) to lowest values below detection limit down the sediment column. Allowing for different bottom depths and vertical sediment sections, bacterial viability was significantly correlated with FDA estimations ( p<0.001), indicating that viability assessed by BacLight staining is a good indicator for bacterial activity in deep-sea sediments. Comparisons between total L/D and DAPI counts not only indicated a complete bacterial cell coverage, but a better ability of BacLight staining to detect cells under low activity conditions. Time course experiments confirmed the need of a rapid method for viability measurements of deep-sea sediment bacteria, since changes in pressure and temperature conditions caused a decrease in bacterial viability of up to 50% within the first 48 h after sample retrieval. The Bacterial Viability Kit proved to be easy to handle and to provide rapid and reliable information. It's application to deep-sea samples in absence of pressure-retaining gears is very promising, as short staining exposure time is assumed to lessen profound adverse effects on bacterial metabolism due to decompression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.