Abstract

Background: PPODA-QT is a novel liquid embolic under development for the treatment of cerebral aneurysms. We sought to test the rabbit-elastase aneurysm model to evaluate the tissue response following PPODA-QT embolization.Methods: Experimental elastase-induced aneurysms were created in fourteen New Zealand White Rabbits. Eight animals were used for aneurysm model and endovascular embolization technique development. Six PPODA-QT-treated animals were enrolled in the study. Control and aneurysm tissues were harvested at acute (n = 2), 1-month (n = 2), and 3-month (n = 2) timepoints and the tissues were prepared for histology assessment.Results: All fourteen rabbit-elastase aneurysms resulted in small and medium aneurysm heights (<10 mm dome height) with highly variable neck morphologies, small midline dome diameters, and beyond-wide dome-to-neck (d: n) ratios. Histological evaluation of four aneurysms, treated with PPODA-QT, demonstrated reorganization of aneurysm wall elastin into a smooth muscle layer, and observed as early as the 1-month survival timepoint. At the aneurysm neck, a homogenous neointimal layer (200–300 μm) formed at the PPODA-QT interface, sealing off the parent vessel from the aneurysm dome. No adverse immune response was evident at 1- and 3-month survival timepoints.Conclusion: PPODA-QT successfully embolized the treated aneurysms. Following PPODA-QT embolization, neointimal tissue growth and remodeling were noted with minimal immunological response. The experimental aneurysms created in rabbits were uniformly small with inconsistent neck morphology. Further testing of PPODA-QT will be conducted in larger aneurysm models for device delivery optimization and aneurysm healing assessment before human clinical investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.