Abstract

An explicitly polarizable force field based exclusively on quantum data is applied to calculations of relative binding affinities of ligands to proteins. Five ligands, differing by replacement of an atom or functional group, in complexes with three serine proteases-trypsin, thrombin, and urokinase-type plasminogen activator-with available experimental binding data are used as test systems. A special protocol of thermodynamic integration was developed and used to provide sufficiently low levels of systematic error along with high numerical efficiency and statistical stability. The calculated results are in excellent quantitative (rmsd = 1.0 kcal/mol) and qualitative (R(2) = 0.90) agreement with experimental data. The potential of the methodology to explain the observed differences in the ligand affinities is also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.