Abstract
AbstractThis paper presents the methodology of a very sensitive determination of scandium in excess of nickel by adsorptive stripping voltammetry on a mercury film electrode and PLS regression. A calibration set consisting of binary mixtures containing 5, 15, 25, 35 or 45×10−9 M Sc(III) and simultaneously 0.5–50×10−7 M of Ni(II) was used to develop the chemometric PLS calibrations. An external set containing synthetic mixtures of 10, 20, 30, 40×10−9 M Sc(III) and the same Ni(II) concentration as mentioned above was used to validate the model and evaluate predictive ability. The application of data pretreatment techniques involving baseline correction, smoothing, range‐scaling, mean‐centering and their influence on the PLS model complexity, were also investigated. In the effect, the model for Sc(III), including 6 latent variables, was constructed. The model fulfills validation criteria and is characterized by a good prediction ability (majority of the prediction errors are lower than 10%). This work shows significant progress in the development of a very sensitive analytical technique for the determination of scandium in the presence of different concentrations of nickel by application of multivariate calibration tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.