Abstract
A new approach to the problem of optimal control of linear dynamic systems is proposed that makes use of a method of input and state parametrization to transform the original problem into a problem of the Calculus of Variations. In contrast to the standard approaches for this class of problems, two salient features of the new approach are that no Lagrange multiplier functions need to be invoked and that the class of inputs can be restricted to the – relatively small – class of continuous functions, even for problems with fixed end-states. The resulting necessary conditions of optimality, i.e., the Euler–Lagrange equation and the boundary conditions for the transformed problem, are proved to be equivalent to those resulting from the standard method of First Variations. In case of quadratic cost functionals, the new approach provides a simpler alternative to the well known, but equally difficult, Riccati differential equation approach and results in a simple dynamic state-feedback implementation of the optimal control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.