Abstract

In the last few years, wire chambers have been frequently used for X-ray detection because of their low cost, large area and reliability. X-ray diffraction is an irreplaceable method for powder crystal lattice measurements. A one-dimensional single-wire chamber has been developed in our lab to provide high position resolution for powder diffraction experiments using synchrotron radiation. There are 200 readout strips of 0.5 mm width with a pitch of 1.0 mm in the X direction, and the working gas is a mixture of Ar and CO2 (90/10). The one-dimensional position of the original ionization point is determined by the adjacent strip's distribution information using the center of gravity method. Recently, a study of the detector's performance and diffraction image was completed at the 1W1B laboratory of the Beijing Synchrotron Radiation Facility (BSRF) using a sample of SiO2. Most of the relative errors between the measured values of diffraction angles and existing data were less than 1%. The best position resolution achieved for the detector in the test was 71 μm (σ value) with a 20 μm slit collimator. Finally, by changing the detector height in incremental distances from the center of the sample, the one-dimensional detector achieved a two-dimensional diffraction imaging function, and the results are in good agreement with standard data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.