Abstract
Various mechanical and geometrical parameters have different effects on the isolation system's performance. Thus, a sensitivity study of the isolated structures' behavior is an essential matter. In this regard, the isolation systems should be designed using optimization approaches to consider the effects of the different factors. In this study, the optimal design of the lead rubber bearing (LRB) seismic isolation was conducted by considering mass irregularity and near-fault seismic excitation effects. Also, sensitivity analysis of the behavior of the considered isolated buildings was implemented concerning the mechanical parameters of the LRB system. A nonlinear time history dynamic analysis was used here, and the design optimization of the LRB isolator was programmed using the newly introduced grasshopper optimization algorithm (GOA). The main purpose was to investigate the ability of the GOA to optimize the design parameters of the LRB-isolated frames. The results proved the desirable ability of the GOA to solve optimal design problems for isolation systems. Also, the sensitivity analysis of the seismic behavior of LRB base-isolated structures showed that the yield base shear index had the most important effects. Also, the mass irregularity parameter showed a negligible influence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.