Abstract

The performance of a novel multistage estimator when applied to the estimation of the position, velocity, and acceleration of high dynamic Global Positioning System (GPS) receivers is discussed. For the present application, a two-stage specialization of the more general estimation scheme is considered, wherein the first-stage algorithm is selected to be a modified least-squares algorithm operating upon the differential signal model and referred to as differential least-squares (DLS) and the second stage is simply an extended Kalman filter (EKF). In terms of the threshold on received carrier power-to-noise power spectral density ratio (CNR), when compared to the single-stage EKF algorithm, the DLS-EKF algorithm is about 1.5-2.0 dB better in terms of threshold and outperforms the crossproduct AFC (automatic frequency control) loop by 2-5 dB. For the case when data modulation is present, the proposed scheme provides an improvement of about dB in terms of CNR compared to an earlier approximate MLE (maximum likelihood estimation) scheme. There are also very significant improvements in terms of other performance measures. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.