Abstract

Intermediate host species provide a crucial link in the emergence of zoonotic infectious diseases, serving as a population where an emerging pathogen can mutate to become human-transmissible. Identifying such species is thus a key component of predicting and possibly mitigating future epidemics. Despite this importance, intermediate host species have not been investigated in much detail, and have generally only been identified by testing for the presence of pathogens in multiple candidate species. In this paper, we present a mathematical model able to identify likely intermediate host species for emerging zoonoses based on ecological data for the candidates and epidemiological data for the pathogen. Since coronaviruses frequently emerge through intermediate host species and, at the time of writing, pose an urgent pandemic threat, we apply the model to the three emerging coronaviruses of the twenty-first century, accurately predicting palm civets as intermediate hosts for SARS-CoV-1 and dromedary camels as intermediate hosts for MERS. Further, we suggest mink, pangolins, and ferrets as intermediate host species for SARS-CoV-2. With the capacity to evaluate intermediate host likelihood among different species, researchers can focus testing for possible infection sources and interventions more effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.