Abstract

Accurate prediction of renewable energy can provide an important basis for national energy security and the government to formulate policies. Therefore, according to the non-linearity of energy prediction system, this paper proposes a new nonlinear grey Bernoulli optimization model by the grey Bernoulli extended model, which is a nonlinear grey prediction model, and studies the properties of the new model. The order and nonlinear coefficient of the new model are optimized by Particle Swarm Optimization. Then, through the consumption of global renewable energy, such as solar, wind and hydropower as empirical analyses, the results of the four evaluation indicators show that the new model works better than the original model, which has higher prediction accuracy than before and makes the prediction model more applicable. At the same time, the model results were compared with the weighted grey model, Verhulst and the discrete grey model, and the new model has the highest accuracy. Finally, the new model is used to forecast the global consumption of wind, solar and hydropower energy in 2019–2023. The results will provide important forecasting information for global energy conservation and emission reduction policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.