Abstract
Application of polyester-degrading microorganisms or enzymes should be considered as an eco-friendly alternative to chemical recycling due to the huge plastic waste disposal nowadays. However, current impranil DLN-based screening of polyester-degrading microorganisms is time-consuming, labour-intensive and unable to distinguish polyesterases from other protease- or amidase-like enzymes. Herein, we present an approach that combined a novel synthetic fluorescent polyurethane analogue probe (FPAP), along with the droplet-based microfluidics to screen polyurethane-degrading microorganisms through fluorescence-activated droplet sorting (FADS) pipeline. The fluorescent probe FPAP exhibited a fluorescence enhancement effect once hydrolysed by polyesterases, along with a strong specificity in discriminating polyesterases from other non-active enzymes. Application of FPAP in a microfluidic droplet system demonstrated that this probe exhibited high sensitivity and efficiency in selecting positive droplets containing leaf-branch compost cutinase (LCC) enzymes. This novel fluorogenic probe, FPAP, combined with the droplet microfluidic system has the potential to be used in the exploitation of novel PUR-biocatalysts for biotechnological and environmental applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.