Abstract

Food can change various physiological parameters along the gastrointestinal tract, potentially impacting postprandial drug absorption. It is thus important to consider different in vivo conditions during in vitro studies. Therefore, a novel dissolution medium simulating variable postprandial pH values and lipid concentrations was developed and used in this study. Additionally, by establishing and validating a suitable analytical method, the effects of these parameters on the dissolution of a model drug, cinnarizine, and on its distribution between the lipid and aqueous phases of the medium were studied. Both parameters, pH value and lipid concentration, were shown to influence cinnarizine behavior in the in vitro dissolution studies. The amount of dissolved drug decreased with increasing pH due to cinnarizine's decreasing solubility. At pH values 5 and 7, the higher concentration of lipids in the medium increased drug dissolution, and most of the dissolved drug was distributed in the lipid phase. In all media with a lower pH of 3, dissolution was fast and complete, with a significant amount of drug distributed in the lipid phase. These results are in accordance with the in vivo observed positive food effect on cinnarizine bioavailability described in the literature. The developed medium, with its ability to easily adjust the pH level and lipid concentration, thus offers a promising tool for assessing the effect of co-ingested food on the dissolution kinetics of poorly soluble drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.