Abstract

A novel contactless method for conductivity sensing is introduced that utilizes a driving coil and two tunable and near resonant coils. The design uses only inexpensive electronic components and a variable frequency rf generator. An algebraic expression for the response has been derived and simulations indicate a linear response to surface conductivity changes over at least four orders of magnitude. The sensitivity is shown to depend on the conductivity of the substrate, with a limit to conductivity changes as low as 10−4 Ω−1 for insulating substrates. An ultrahigh vacuum compatible version of this probe has been used to monitor in situ aluminum thin film growth by chemical vapor deposition on a native oxide covered, highly doped, Si(111) wafer. On this semiconducting substrate (3 Ω−1) a sensitivity to sheet conductivity changes as low as ∼2×10−2 Ω−1 has been demonstrated. The Al films show a discrete jump in differential sheet conductivity associated with Al cluster coalescence during growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.