Abstract

In the present work, Ce-UiO-66, namely cerium-organic framework was prepared through rapid one-step solvothermal method, uncovering it potency to effectively get rid of tetracycline (TC) from an aqueous solution. The morphology and structure of Ce-UiO-66 materials were characterized by typical traditional methods such as FESEM, XRD, FTIR, and XPS. The process performance in terms of TC removal was investigated at different operating conditions. Specifically, when the dose, pH value, adsorption time, and temperature were 20 mg, 9, 180 min, and 25 ℃ respectively, the removal effect of TC was the best. The adsorption process of TC was described using the Freundlich model and the quasi second order model, respectively. The removal efficiency of TC by UiO-66 before modification was only 40.37%, and the adsorption amount was 44.38 mg⋅g−1, while the removal efficiency of TC adsorption by Ce-UiO-66 could reach about 90% under the optimal adsorption conditions, and the maximum adsorption amount was 86.95 mg⋅g−1. The data showed that Ce-UiO-66 exhibits good TC adsorption performance. And TC adsorption process was spontaneous and endothermic multi molecular layer chemical adsorption. Ce doping increased the quantity of active sites, and promoted the synergistic effects of electrostatic attraction, π-π conjugation, and hydrogen bonding between the adsorbent and TC, thus improving the adsorption effect of TC. As everyone knows that the application of UiO-66 in the adsorption field can be broadened by doping other metal ions, which prove that the metal skeleton adsorption material has broad development prospects in the next few years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.