Abstract
We consider the problem of laminar mixed convection flow between parallel, vertical and uniformly heated plates where the governing dimensionless parameters are the Prandtl, Rayleigh and Reynolds numbers. Using the method based on the centre manifold theorem which was derived from the general theory of dynamical systems, we reduce a three-dimensional simplified model of ordinary differential amplitude equations emanating from the original Navier-Stokes system of the problem in the vicinity of a trivial stationary solution. We have found that when the forcing parameter, the Rayleigh number, increases beyond the critical value Ra s , the stationary solution is a pitchfork bifurcation point of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.