Abstract

A non isotropic turbulence model is extended and applied to three dimensional stably stratified flows and dispersion calculations. The model is derived from the algebraic stress model (including wall proximity effects), but it retains the simplicity of the "eddy viscosity" concept of first order models. The "modified k-epsilon" is implemented in a three dimensional numerical code. Once the flow is resolved, the predicted velocity and turbulence fields are interpolated into a second grid and used to solve the concentration equation. To evaluate the model, various steady state numerical solutions are compared with small scale dispersion experiments which were conducted at the wind tunnel of Mitsubishi Heavy Industries, in Japan. Stably stratified flows and plume dispersion over three distinct idealized complex topographies (flat and hilly terrain) are studied. Vertical profiles of velocity and pollutant concentration are shown and discussed. Also, comparisons are made against the results obtained with the standard k-epsilon model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.