Abstract

Cytochromes P450 monooxygenases are highly interesting biocatalysts for biotechnological applications, since they perform a diversity of reactions on a broad range of organic molecules. Nevertheless, the application of cytochromes P450 is limited compared to other enzymes mainly because of the necessity of a functional redox chain to transfer electrons from NAD(P)H to the monooxygenase. In this study, we established a novel robust redox chain based on adrenodoxin, which can deliver electrons to mitochondrial, bacterial and microsomal P450s. The natural membrane-associated reductase of adrenodoxin was replaced by the soluble Escherichia coli reductase. We could demonstrate for the first time that this reductase can transfer electrons to adrenodoxin. In the first step, the electron transfer properties and the potential of this new system were investigated in vitro, and in the second step, an efficient E. coli whole-cell system using CYP264A1 from Sorangium cellulosum So ce56 was developed. It could be demonstrated that this novel redox chain leads to an initial conversion rate of 55μM/h, which was 52% higher compared to the 36μM/h of the redox chain containing adrenodoxin reductase. Moreover, we optimized the whole-cell biotransformation system by a detailed investigation of the effects of different media. Finally, we are able to demonstrate that the new system is generally applicable to other cytochromes P450 by combining it with the biotechnologically important steroid hydroxylase CYP106A2 from Bacillus megaterium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call