Abstract

In processing and end-use environments, and particularly nuclear fission reactor excursions, inorganic materials can be subjected to temperatures where liquids and vapors are significant components of the materials system. Classical characterization and thermochemical methods fail at temperatures beyond about 3000 K, due to the reactivity of container materials. Use of a pulsed laser beam as a localized heat source avoids this limitation. Coupling laser heating with molecular beam sampling and mass- and optical-spectroscopy allows us to characterize the thermochemistry of liquid–vapor systems at temperatures of 3000–5000 K, pressures of 0.01–20 bar (1 bar=10 5 Nm −2 ), and on a nanosecond order-of-magnitude time scale. Materials considered here include C, ZrO 2,Y 2O 3 and HfO 2. New approaches for temperature measurement and for pressure determination, using electron impact mass spectral data coupled with deposition rate measurements, are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.