Abstract
A novel infinite element method (IEM) is presented in this paper for solving plate vibration problems. In the proposed IEM, the substructure domain is partitioned into multiple layers of geometrically similar finite elements which use only the data of the boundary nodes. A convergence criterion based on the trace of the mass matrix is used to determine the number of layers in the IE model partitioning process. Furthermore, in implementing the Craig-Bampton (CB) reduction method, the inversion of the global stiffness matrix is calculated using only the stiffness matrix of the first element layer. The validity and performance of the proposed method are investigated by means of four illustrative problems. The first example considers the case of a simple clamped rectangular plate. It is observed that the IEM results are in good agreement with the theoretical results for all six natural frequencies. The second example considers the frequency response of a clamped rectangular plate with a crack. The main feature of IEM is that a very fine and good quality virtual mesh can be created around the crack tip. The third and fourth examples consider the natural frequency of a multiple point supported plate and a perforated plate, respectively. The results are obtained just need to adjust the reference point or boundary nodes. The parametric analyses for various geometric profiles are easy to be conducted using these numerical techniques. In general, the results presented in this study confirm that the proposed IEM algorithm provides a fast, direct and accurate means of simulating the dynamic response of various plate structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.