Abstract

The application of an inverse method for determining the parameters of a crystal plasticity constitutive law of a body-centered-cubic (BCC) single phase material is presented. Nanoindentation is used as the primary experimental input. An objective function, based on the deviation between the experimentally measured imprint and the simulated one, is minimized by a differential evolution algorithm to obtain the best fitting crystal plasticity parameters. To aid the identification procedure additional experimental data is used: the upper bounds and the ratios of the critical resolved shear stresses of the three slip plane families in BCC are estimated from micropillar compression experiments and used as a constraint in the optimization. The effect of the imposed constraints and the chosen strategy for mapping experimental to simulated displacements is presented and discussed. The validation of the method is done in the macroscopic regime by comparing an experimental tensile test with a simulated one using the obtained crystal plasticity parameters. Accurate results are achieved from two different indents. Therefore, the method is a promising path for determining crystal plasticity parameters in the case where a direct fitting from a macroscopic stress–strain curve is not possible, i.e. in the case of multi-phase materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.