Abstract

Cross sectional studies of patients at risk of developing Alzheimer disease (AD) have identified several brain regions known to be prone to degeneration suitable as biomarkers, including hippocampal, ventricular, and whole brain volume. The aim of this study was to longitudinally evaluate an index based on morphometric measures derived from MRI data that could be used for classification of AD and healthy control subjects, as well as prediction of conversion from mild cognitive impairment (MCI) to AD. Patients originated from the AddNeuroMed project at baseline (119 AD, 119 MCI, 110 controls (CTL)) and 1-year follow-up (62 AD, 73 MCI, 79 CTL). Data consisted of 3D T1-weighted MR images, demographics, MMSE, ADAS-Cog, CERAD and CDR scores, and APOE e4 status. We computed an index using a multivariate classification model (AD vs. CTL), using orthogonal partial least squares to latent structures (OPLS). Sensitivity, specificity and AUC were determined. Performance of the classifier (AD vs. CTL) was high at baseline (10-fold cross-validation, 84% sensitivity, 91% specificity, 0.93 AUC) and at 1-year follow-up (92% sensitivity, 74% specificity, 0.93 AUC). Predictions of conversion from MCI to AD were good at baseline (77% of MCI converters) and at follow-up (91% of MCI converters). MCI carriers of the APOE e4 allele manifested more atrophy and presented a faster cognitive decline when compared to non-carriers. The derived index demonstrated a steady increase in atrophy over time, yielding higher accuracy in prediction at the time of clinical conversion. Neuropsychological tests appeared less sensitive to changes over time. However, taking the average of the two time points yielded better correlation between the index and cognitive scores as opposed to using cross-sectional data only. Thus, multivariate classification seemed to detect patterns of AD changes before conversion from MCI to AD and including longitudinal information is of great importance.

Highlights

  • Alzheimer disease (AD) is one of the most common forms of neurodegenerative disorders characterized by a gradual loss of cognitive functions such as episodic memory

  • The aim of this study was to longitudinally evaluate an index based on morphometric measures derived from magnetic resonance imaging (MRI) data that could be used for classification of AD and healthy control subjects, as well as prediction of conversion from mild cognitive impairment (MCI) to AD

  • We have previously introduced an index derived from a multivariate discrimination model [orthogonal partial least squares to latent structures (OPLS)] (Spulber et al, 2013)

Read more

Summary

Introduction

Alzheimer disease (AD) is one of the most common forms of neurodegenerative disorders characterized by a gradual loss of cognitive functions such as episodic memory. MRI provides structural information about the brain and has for many years been widely used for early detection and diagnosis of AD (O’Brien, 2007; Ries et al, 2008; Tondelli et al, 2012). With this technique it is possible to measure both regional (hippocampus/entorhinal cortex) and global (whole brain) atrophy, which are considered sensitive surrogate markers, capable of quantifying the extent of brain degeneration in dementia (Apostolova et al, 2006)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.