Abstract

Transient beam loading, which causes cavity gradient fluctuation, is becoming a major concern for the stable operation of the high current superconducting radio-frequency (SRF) accelerators. Iterative learning control (ILC) is an effective algorithm aiming to improve systems operated in repetitive mode. This ILC technique was successfully introduced to the low-level radio-frequency (LLRF) control in accelerators to compensate for the field fluctuation caused by repetitively pulsed beam. The modern LLRF system prefers to use the FPGA-based hardware platform to realize a real-time control framework. However, considering the algorithm complexity and the hardware cost, the ILC algorithm is usually implemented outside FPGA. This practice would decrease the real-time ability of the control system. In this paper, we present a modified ILC algorithm that can be implemented inside FPGA. The key idea of our method is to simplify the beam profile using a rectangular pulse. The method was demonstrated in the SRF cavities at Chinese Accelerator driven system Front-end demo SRF linac (CAFe). The experimental results in the CAFe beam-commissioning confirmed that the beam-induced gradient fluctuation is successfully suppressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.