Abstract

We examined the influence of the gas flow-rate, microwave power and trichloroethylene concentration on the destruction of trichloroethylene with a system based on a microwave helium plasma operating at atmospheric pressure. Based on the experimental results obtained, the proposed system allows input concentrations of C2HCl3 in the ppmv range to be reduced to output concentrations in the ppbv range (i.e. virtually quantitative destruction) by using a microwave plasma power below 1000 W. High helium flow-rates and C2HCl3 concentrations allow energy efficiency values above 600 g/kW h to be obtained. Analyses of the output gases by gas chromatography and species present in the plasma by optical emission spectroscopy confirmed the negligible presence of halogen compounds resulting from the destruction of C2HCl3, and that of CCl4 and C2Cl4 as the sole chlorine species exceeding levels of 30 ppbv. Gaseous by-products consisted mainly of CO2, NO and N2O in addition to Cl2 traces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.