Abstract
Background Implementing automated seizure detection in long-term electroencephalography (EEG) analysis enables the remote monitoring of patients with epilepsy, thereby improving their quality of life. Objective The objective of this study was to explore an mHealth (mobile health) solution by investigating the feasibility of smartphones for processing large EEG recordings for the remote monitoring of patients with epilepsy. Methods We developed a mobile app to automatically analyze and classify epileptic seizures using EEG. We used the cross-database model developed in our previous study, incorporating successive decomposition index and matrix determinant as features, adaptive median feature baseline correction for overcoming interdatabase feature variation, and postprocessing-based support vector machine for classification using 5 different EEG databases. The Sezect (Seizure Detect) Android app was built using the Chaquopy software development kit, which uses the Python language in Android Studio. Various durations of EEG signals were tested on different smartphones to check the feasibility of the Sezect app. Results We observed a sensitivity of 93.5%, a specificity of 97.5%, and a false detection rate of 1.5 per hour for EEG recordings using the Sezect app. The various mobile phones did not differ substantially in processing time, which indicates a range of phone models can be used for implementation. The computational time required to process real-time EEG data via smartphones and the classification results suggests that our mHealth app could be a valuable asset for monitoring patients with epilepsy. Conclusions Smartphones have multipurpose use in health care, offering tools that can improve the quality of patients’ lives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.