Abstract

SummarySolid waste life cycle modeling has predominantly focused on developed countries, but there are significant opportunities to assist developing and transition economies to minimize the environmental impact of solid waste management (SWM). Serbia is representative of a transition country and most (92%) of its waste is landfilled. As a Candidate European Union (EU) country, Serbia is expected to implement SWM strategies that meet EU directives. The Solid Waste Life‐Cycle Optimization Framework (SWOLF) was used to evaluate scenarios that meet EU goals by 2030. Scenarios included combinations of landfills, anaerobic digestion, composting, material recovery facilities (MRFs), waste‐to‐energy (WTE) combustion, and the use of refuse‐derived fuel in cement kilns. Each scenario was evaluated with and without separate collection of recyclables. Modeled impacts included cost, climate change, cumulative fossil energy demand, acidification, eutrophication, photochemical oxidation, total eco‐toxicity, and total human toxicity. Trade‐offs among the scenarios were evaluated because no scenario performed best in every category. In general, SWM strategies that incorporated processes that recover energy and recyclable materials performed well across categories, whereas scenarios that did not include energy recovery performed poorly. Emissions offsets attributable to energy recovery and reduced energy requirements associated with remanufacturing of recovered recyclables had the strongest influence on the results. The scenarios rankings were robust under parametric sensitivity analysis, except when the marginal electricity fuel source changed from coal to natural gas. Model results showed that the use of existing infrastructure, energy recovery, and efficient recovery of recyclables from mixed waste can reduce environmental emissions at relatively low cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.