Abstract

A multi-level adaptive numerical technique is applied to a nonlinear formulation of the mild-slope equation, to obtain the nearshore wave field, where the dominant processes of wave transformation are shoaling, refraction and diffraction. The advantage of this formulation over the traditional elliptic, parabolic and hyperbolic formulations is to require a lower minimum number of grid nodes per wavelength, thus, its capacity to predict the wave field for larger coastal areas. The efficiency of the interactions between the grid mesh levels, where two robust Krylov subspace iterative methods, the Bi-CGSTAB and the GMRES, are applied to solve the governing equation, is tested, for several hierarchies of grid mesh levels. The results show that the multi-level adaptive technique is efficient only if the GMRES iterative method is applied, and that for six grid mesh levels good results can be achieved for a residual as low as 10 −3 for the finest grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call