Abstract

PurposeIn the finite element analysis of a hot forging process with hexahedral elements, flash region is difficult to analyze because of the thin shape. In this paper, a hot forging process is effectively analyzed by constructing a locally fine mesh in the flash region.Design/methodology/approachWhen remeshing is decided by an error estimation and flash is generated, the boundary patch of the mesh is constructed and expanded in the normal direction of the flash region. After hexahedral mesh is constructed in the expanded patch with master grid approach, the boundary patch is compressed to the original shape and the nodes in the boundary are moved to the relative position of the boundary patch. Then, a locally fine mesh is constructed in the flash region. The quality of mesh on the boundary is again improved by adding surface element layer. Therefore, the hot forging process can be effectively analyzed by constructing the adaptive hexahedral mesh in the flash region.FindingsThe results show that the locally fine mesh can be constructed in the hexahedral mesh generation procedure by constructing mesh in the expanded patch and compressing the mesh according to the original boundary patch without affecting the compatibility of element. Then, it is applied to the analysis of a hot forging process and it has been shown that the analysis result of the proposed technique can save the analysis time remarkably relative to that of the fine mesh, while maintaining the analysis accuracy of the fine mesh.Originality/valueIn the finite element analysis of a hot forging process, the flash region is very difficult to analyze because it is difficult to construct locally fine mesh with hexahedral elements. A new adaptive mesh generation technique using hexahedral elements is suggested to overcome such difficulty and applied to the analysis of a hot forging process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.