Abstract
A significant part of Campania is extensively covered by volcaniclastic soils, deriving from the alteration of airfall-sedimented formations of layered ashes and pumices that were ejected by Campi Flegrei and Mt. Somma–Vesuvius during explosive eruptions. Where such soils cover steep slopes cut in carbonate bedrock, landforms depend essentially on the morpho-evolution of such slopes prior to the deposition of the volcaniclastic soils, because these are generally present only as thin veneers, up to a few meters of total thickness. Historical records and local literature testify that, in this part of Campania, landslides that originate on carbonate slopes covered by such soils and terminate at their foot or at gully outlets are frequent, following critical rainfall events. Such landslides can be classified as complex, occurring initially as debris slides, but rapidly evolving into debris avalanches and/or debris flows. The localization of the initial sliding areas (i.e. “sources”) on the slopes depends on both the spatial distribution of characters of the soil cover and the spatial distribution of the triggering rainfall events. It therefore appears reasonable to separate the two aspects of the problem and focus on the former one, in order to attempt an assessment of soil sliding susceptibility in the event of landslide-triggering rainfall. In this paper, some results of the application of a method aimed at such an assessment are presented. The method, called SLIDE (from SLiding Initiation areas DEtection), is based on the concept that, for a spatially homogeneous soil cover and a spatially homogeneous landslide-triggering rainfall sequence, different values of threshold slope gradient for limit equilibrium conditions exist, depending on morphological characters of the soil cover, such as its continuity and planform curvature. The method is based on the assessment of (1) soil cover presence, (2) discontinuities within soil cover, (3) slope gradients and curvature, by means of good resolution DEMs. It has been applied to sample carbonate slopes of Campania, where landslides originated either repeatedly or recently. Results are encouraging, and a soil sliding susceptibility map of a large area, based on a simplified version of method, is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.