Abstract

Microplastic (MP) pollution is a global environmental problem. To understand the biological effects of MPs on humans, it is essential to evaluate the response of human cells to model plastic particles that mimic environmental MPs in a sensitive and non-invasive manner. In this study, we investigated the preparation of poly(ethylene terephthalate) (PET) fragments with properties similar to those of environmental MPs by combining photo-oxidative degradation via ultraviolet (UV) irradiation with mechanical pulverization and hydrolysis via ultrasound (US) exposure. Combination of UV and US treatments decreased the particle size of PET fragments to 10.2 µm and increased their crystallinity and Young's modulus to 35.7 % and 0.73 GPa, respectively, while untreated PET fragments showed the particle size of 18.9 µm, the crystallinity of 33.7 %, and Young’s modulus of 0.48 GPa. In addition, an increase in negative surface potential and O/C ratio were observed for UV/US-treated PET fragments, suggesting surface oxidation via UV/US treatment. Cytokine secretion from human macrophages was evaluated by a highly sensitive inflammation evaluation system using the HiBiT-based chemiluminescence detection method developed by genome editing technology. UV/US-treated PET fragments induced a 1.4 times higher level of inflammatory cytokine secretion on inflammatory macrophages than untreated ones, suggesting that the biological responses of PET fragments could be influenced by changes in material properties via oxidation. In conclusion, UV/US treatment enables efficient preparation of model plastic particles and is expected to provide new insights into the evaluation of biological effects using human cells. (240 words)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.