Abstract

We have previously reported that a flow-through type pH/CO2 sensor system using two ion sensitive field effect transistors (ISFETs) could be utilized to evaluate the production rate of total carbonate (secreted CO2 + secreted bicarbonate ion) and free lactic acid (secreted lactic acid − secreted bicarbonate ion). To validate the usefulness of this system, we applied it to the quantitative analysis of metabolic switching by the change of glucose concentrations in cultured bovine arterial endothelium cell, human umbilical vein endothelium cell and rat cardiac muscle cell. In all of these cell species, a decrease of glucose concentration increased total carbonate that represents the cellular respiration activity and decreased free lactic acid that represents glycolysis activity. We firstly analyzed a switching of metabolic pathways from glycolysis to respiration with a decrease of glucose quantitatively. This ISFET system can be applicable to many biological investigations by analyzing metabolic activity and give dynamic cellular information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.